Содержание

  1. Классификация зубчатых передач
  2. Классификация пространственных зубчатых передач
  3. Типы станков для обработки конических колес
  4. Точность зубчатых колес и методы зубонарезания




Классификация зубчатых передач

Классификация зубчатых передач

Классификация зубчатых передач


Классификация пространственных зубчатых передач

Классификация пространственных зубчатых передач

Классификация пространственных зубчатых передач


Классификация Конических зубчатых передач

Классификация пространственных зубчатых передач

Классификация Конических зубчатых передач



Классификация Конических зубчатых передач

Классификация Конических зубчатых передач


Коническая зубчатая передача относится к классу Пространственных зубчатых передач, которые применяются для передачи вращения между валами, оси которых пересекаются или скрещиваются. К ним относятся, также: смешанные конические передачи, гиперболические передачи, винтовые передачи, гипоидные передачи, червячные передачи, спироидные передачи.

Коническая зубчатая передача осуществляет передачи между валами с пересекающимися осями, у зубчатых колёс которых аксоидные начальные и делительные поверхности конические. В конической передаче начальные поверхности совпадают с аксоидами. Линии зубьев конической передачи могут быть прямыми, тангенциальными, круговыми наклонными, круговыми «зерол», паллоидными. Вершины конусов пары конических зубчатых колес должны совпадать с точкой пересечения их осей.

Коническая передача (рис. 2.1) состоит из шестерни 1, имеющей меньшее число зубьев z1 и колеса 2 с большим числом зубьев z2, относительное движение которых можно представить как качение без скольжения друг по другу их начальных конусов (аксоидов). Линии пересечения начальных конусов и боковых поверхностей зубьев называют линиями зубьев.

Прямозубая коническая передача


Прямозубая коническая передача

Прямозубая коническая передача. Дифференциал


Оси конических колес прямозубой зубчатой передачи составляют прямой угол, и их зубья обычно нарезаются по радиусам. Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2...3 м/с, допустимо до 8 м/с). Прямозубые конические передачи обеспечивают передаточное отношение до 3.

Тангенциальная коническая передача

Если зубья конических колес прямые, но идут не по радиусам, то они называются тангенциальными и могут работать с окружной скоростью до 12 м/с.

Конические передачи с криволинейными зубьями

Конические колеса с криволинейными зубьями бывают трех разновидностей:

  1. Коническое зубчатое колесо с круговыми зубьями, нарезанными по окружности, линии зубьев которых имеют вид дуги окружности с углом наклона β n > 0 (этот угол называют углом спирали);
  2. Коническое зубчатое колесо с эвольвентной линией зубьев - зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются эвольвенты концентрической окружности (Паллоидные);
  3. Коническое зубчатое колесо с циклоидальной линией зубьев - зубчатое колесо, теоретическими линиями зубьев которого на развертке делительного конуса являются циклоидальные кривые.

Коническое зубчатое колесо с круговыми зубьями, у которого угол наклона зубьев (угол спирали) в одной из точек делительной средней линии зуба равен нулю называют, также, коническое зубчатое колесо с нулевым углом наклона зубьев или "Зерол".

Примечание

Различают конические зубчатые колеса с внешним нулевым, средним нулевым и внутренним нулевым углом наклона круговых зубьев, у которых соответственно равны нулю внешний делительный, средний делительный и внутренний делительный углы наклона средней линии зуба конического зубчатого колеса с круговыми зубьями.

Конические зубчатые колёса с криволинейными зубьями обеспечивают более плавное зацепление, меньший шум, большую несущую способность и окружную скорость - до 35-40 м/с.

Благодаря наклону и бочкообразной форме зубьев конические колеса с круговым зубом, более прочны, бесшумны и допускают большие отклонения при монтаже, чем прямозубые.

Конические передачи с круговыми зубьями имеют в зацеплении одновременно не менее двух зубьев, обеспечивая за счет формы зуба непрерывный контакт, бесшумность и плавность даже при высоких скоростях вращения. При этом передаваемые мощности на 30 % больше, чем у прямозубых конических колес.

Колеса типа Зерол, как и прямозубые конические колеса, работают с минимальными осевыми нагрузками. Они легко шлифуются после термообработки, благодаря чему достигается высокая точность. Поэтому колеса типа Зерол применяют в высокоскоростных передачах (с окружной скоростью более 76 м/с), используемых в авиастроении. Их можно устанавливать также в приводах, где ранее применялись прямозубые колеса.


Гипоидные зубчатые передачи

Гипоидные зубчатые передачи

Гипоидные зубчатые передачи


Гипоидные зубчатые передачи

Гипоидные зубчатые передачи


Гипоидные колеса за счет увеличения угла наклона зубьев β n и коэффициента перекрытия работают более плавно и бесшумно, чем передачи с круговыми зубьями. Они широко применяются в автомобилестроении, так как благодаря смещению осей шестерни и колеса дают возможность конструировать низко опущенные кузова автомобилей.

Гипоидная зубчатая передача: 1 — ведомая шестерня, 2 — ведущая шестерня Гипоидная передача (гиперболоидная) — вид винтовой зубчатой передачи, осуществляемой коническими колёсами (с косыми или криволинейными зубьями) со скрещивающимися осями (обычно 90°). Гипоидная передача имеет смещение по оси между большим и малым зубчатыми колесами. Данный тип передачи характеризуется повышенной нагрузочной способностью, плавностью хода и бесшумностью работы. Часто используется как главная передача в приводах ведущих колёс автомобилей, сельскохозяйственной техники, а также в качестве привода в станках и прочих индустриальных машинах для обеспечения высокой точности при большом передаточном числе.

Отличается от спиральной тем, что ось ведущей шестерни смещена относительно оси ведомого колеса на величину гипоидного смещения.


Спироидные зубчатые передачи

Спироидные зубчатые передачи

Спироидные зубчатые передачи


Спироидные зубчатые передачи - это гипоидные зубчатые передачи, в которых начальные поверхности зубчатых колёс конические, шестерни имеют винтовые зубья, а зубчатые колеса имеют сопряженные поверхности зубьев с линейным контактом, если производящая поверхность для одного из них совпадает с главной поверхностью зубьев первого зубчатого колеса. По форме поверхности вершин витков червяка и способу его расположения относительно межосевой линии их разделяют на три вида: цилиндрические спироидные передачи, традиционно конусные наружного зацепления, обратноконусные внутреннего зацепления (рис. 8).


Типы станков для обработки конических колес

Колёса с прямыми зубьями обрабатывают, обычно, на зубодолбежных или зубострогальных станкахпо методу обкатки одним или чаще двумя резцами. На этих станках воспроизводится зацепление нарезаемого зубчатого колеса с воображаемым плоским производящим зубчатым колесом; при этом два зуба последнего представляют собой зубострогальные резцы, совершающие возвратно-поступательное движение, боковые поверхности каждого из зубьев нарезаемого зубчатого колеса формируются в результате движения резцов и обработки находящихся в зацеплении плоского и нарезаемого зубчатых колёс. Процесс нарезания зубьев происходит при движении резцов к вершине конуса заготовки, а обратный ход является холостым (в этот период резцы отводятся от заготовки).

Пример зубострогальных станков:

Конические зубчатые колёса с круговыми зубьями нарезаются на зуборезных станках методом обкатки с применением зуборезной резцовой головки, представляющей собой диск с вставленными по его периферии резцами, обрабатывающими профиль зуба с двух сторон (первая половина резцов обрабатывает одну сторону, вторая половина — другую).

Пример зуборезных станков:


Точность зубчатых колес и методы зубонарезания

Для зубчатых цилиндрических колес по ГОСТ 1643-81 Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические. Допуски установлено 12 степеней точности: с 1-й по 12-ю. Чем меньше степень, тем точнее колесо. Степени точности 1-я, 2-я и 12-я пока не регламентированы.

Для каждой степени точности установлены нормы кинематической точности, плавности зацепления и контакта зубьев.

Нормы кинематической точности определяют величину наибольшей погрешности угла поворота зубчатых колес в зацеплении за один оборот. Эта погрешность возникает при нарезании зубчатых колес за счет погрешностей взаимного расположения заготовки и режущего инструмента, а также кинематической погрешности станка. Показателями погрешности кинематической точности являются: накопленная погрешность окружного шага и колебание длины общей нормали.

Нормы плавности зацепления колеса определяют величину составляющей полной погрешности угла поворота колеса, многократно повторяющуюся за один поворот колеса. Показателями плавности являются: циклическая погрешность (средняя величина размаха колебаний кинематической погрешности за цикл), предельные отклонения основного шага и погрешность профиля.

Нормы контакта зубьев определяют точность выполнения сопряженных зубьев в передаче в зависимости от относительных размеров пятна контакта в процентах по длине и высоте зуба.

Точность каждой степени характеризуется числовыми нормами по элементам сопряжения.

Устанавливается также величина наименьшего бокового зазора между зубьями и допуск на него.

Боковым зазором называется зазор между зубьями сопряженных колес в передаче, обеспечивающий свободный поворот одного колеса относительно другого. Для передач установлено четыре вида сопряжений с гарантированным зазором: С — с нулевым, Д — с пониженным, X — с нормальным и Ш — с повышенным.

Нормы бокового зазора назначают в соответствии с эксплуатационными требованиями передачи и не зависят от норм точности.

Условное обозначение норм точности зубчатых колес состоит из четырех знаков: первые три означают степень точности в порядке их перечисления, а четвертый характеризует сочетание по боковому зазору. Например: 7-8-8-X.


    Список литературы:

  1. Ачеркан Н.С. Металлорежущие станки. Том 1. 1965.
  2. Гальперин Е.И. Наладка зуборезных станков. 1960.
  3. Кучер А.М. Киватицкий М.М. Покровский А.А. Металлорежущие станки. (Альбом общих видов, кинематических схем и узлов) 1972.
  4. Руководящий материал для конструкторов, проектирующих технологическую оснастку. Основные данные и посадочные места металлорежущих станков. НИИМАШ, 1968.
  5. Малахов Я.А. Зубообрабатывающие и резьбофрезерные станки и их наладка. 1972.
  6. Мильштейн М.З. Нарезание зубчатых колес. Москва, 1972.
  7. Лоскутов В.В. Ничков А.Г. Зубообрабатывающие станки. Москва, М. 1978.
  8. Птицин Г.А. Кокичев В.Н. Зуборезные станки. 1957.

Рубикон, 2018



Станок зуборезный полуавтомат. Видеоролик.





Связанные ссылки. Дополнительная информация




Главная   О компании   Новости   Статьи   Прайс-лист   Контакты  
Справочная информация   Скачать паспорт   Интересное видео   Производители